#### **Towards zero-impact North Sea reef monitoring using environmental DNA**





GEANS stakeholder event – 26 October 2022

## "Classical" biodiversity monitoring in North Sea









# eDNA metabarcoding by Nanopore sequencing





- Fast
- Relatively affordable
- Real-time data access
- Sequencing on location

Promising combination for biodiversity assessment















## eDNA metabarcoding with fish specific primers







# Reef proximity detection







## **Reef proximity detection**









## How do eDNA signals change depending on distance + current?

- Sampling eDNA on or just downstream (~50m) of the reef detects reef bound species such as rock gunnel (*Pholis gunnellus*), four-bearded rockling (*Enchelyopus cimbrius*) and pouting (*Trisopterus luscus*).
- 200 m away from the reef, perpendicular to the current these species are not detected
- Larger species associated, but not bound to reefs are detected in most samples, such as cod, whiting, harbour porpoise.
- Smaller pelagics (herring, pilchard) or sandy bottom species (sandeels, flatfish) form a background signal.







# How do eDNA signals change depending on distance + current?

#### **Conclusions**

Monitoring in the North Sea using eDNA can provide a relatively local picture (~200m resolution) of reef-bound fish species

There always is a background signal present of species that live in the vicinity of the reef, and pelagic species.







# What can be the added benefits of eDNA for fish monitoring

- Next to fish we also detected most other vertebrates, such as seabirds (gulls, razorbills, guillemots, cormorants)
- Using another set of PCR primers, possible to identify to species level benthic species that are hard to ID on camera images (Ensis sp., other burrowing shellfish)
- We encountered many traces of marine mammals, such as harbour porpoise, seals (both common and grey) and white beaked dolphins.
  > Most are common species, and local detection does not proof they are attracted to the reef.





## **Benefits and drawbacks of eDNA based monitoring**



High resolution biodiversity monitoring

Autonomous sample collection





# Future applications for eDNA biomonitoring

- Autonomous sampling of eDNA: Sample at set timepoints at artificial reefs, sluices, power cables, etc.
- Automated DNA sampling and sequencing: Couple DNA sampling to DNA isolation, library prep and sequencing. Send data to lab through satellite







# Marine DNA biomonitoring outlook

5-10 years from now:On line, real time biodiversity monitoringOr: diet analysis by in situ sequencing of eDNA







Vincent et al., Aquatic Mammals 2002, 28.2, 121–130





CONTACT US

#### reindert.nijland@wur.nl

Naturalis

Biodiversity Center





European Regional Development Fund EUROPEAN UNION



https://www.geans.eu/

